Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.

Identifieur interne : 003246 ( Main/Exploration ); précédent : 003245; suivant : 003247

Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.

Auteurs : Qi Liu [République populaire de Chine] ; Chiyu Zhang ; Yongping Yang ; Xiangyang Hu

Source :

RBID : pubmed:20565843

Descripteurs français

English descriptors

Abstract

BACKGROUND

The Phospholipase D (PLD) family plays an important role in the regulation of cellular processes in plants, including abscisic acid signaling, programmed cell death, root hair patterning, root growth, freezing tolerance and other stress responses. PLD genes constitute an important gene family in higher plants. However, until now our knowledge concerning the PLD gene family members and their evolutionary relationship in woody plants such as Poplar and Grape has been limited.

RESULTS

In this study, we have provided a genome-wide analysis of the PLD gene family in Poplar and Grape. Eighteen and eleven members of the PLD gene family were identified in Poplar and Grape respectively. Phylogenetic and gene structure analyses showed that the PLD gene family can be divided into 6 subgroups: alpha, beta/gamma, delta, epsilon, zeta, and phi, and that the 6 PLD subgroups originated from 4 original ancestors through a series of gene duplications. Interestingly, the majority of the PLD genes from both Poplar (76.5%, 13/17) and Grape (90.9%, 10/11) clustered closely together in the phylogenetic tree to the extent that their evolutionary relationship appears more tightly linked to each other, at least in terms of the PLD gene family, than it does to either Arabidopsis or rice. Five pairs of duplicated PLD genes were identified in Poplar, more than those in Grape, suggesting that frequent gene duplications occurred after these species diverged, resulting in a rapid expansion of the PLD gene family in Poplar. The majority of the gene duplications in Poplar were caused by segmental duplication and were distinct from those in Arabidopsis, rice and Grape. Additionally, the gene duplications in Poplar were estimated to have occurred from 11.31 to 13.76 million years ago, which are later than those that occurred in the other three plant species. Adaptive evolution analysis showed that positive selection contributed to the evolution of the PXPH- and SP-PLDs, whereas purifying selection has driven the evolution of C2-PLDs that contain a C2 domain in their N-terminal. Analyses have shown that the C2-PLDs generally contain 23 motifs, more than 17 motifs in PXPH-PLDs that contain PX and PH domains in N-terminal. Among these identified motifs, eight, (6, 8, 5, 4, 3, 14, 1 and 19) were shared by both the C2- and PXPH-PLD subfamilies, implying that they may be necessary for PLD function. Five of these shared motifs are located in the central region of the proteins, thus strongly suggesting that this region containing a HKD domain (named after three conserved H, K and D residues) plays a key role in the lipase activity of the PLDs.

CONCLUSION

As a first step towards genome wide analyses of the PLD genes in woody plants, our results provide valuable information for increasing our understanding of the function and evolution of the PLD gene family in higher plants.


DOI: 10.1186/1471-2229-10-117
PubMed: 20565843
PubMed Central: PMC3095279


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.</title>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Institute of Tibetan Plateau Research at Kunming, Chinese Academy of sciences, Kunming, Yunnan, 650204, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Institute of Tibetan Plateau Research at Kunming, Chinese Academy of sciences, Kunming, Yunnan, 650204</wicri:regionArea>
<wicri:noRegion>650204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chiyu" sort="Zhang, Chiyu" uniqKey="Zhang C" first="Chiyu" last="Zhang">Chiyu Zhang</name>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20565843</idno>
<idno type="pmid">20565843</idno>
<idno type="doi">10.1186/1471-2229-10-117</idno>
<idno type="pmc">PMC3095279</idno>
<idno type="wicri:Area/Main/Corpus">003147</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003147</idno>
<idno type="wicri:Area/Main/Curation">003147</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003147</idno>
<idno type="wicri:Area/Main/Exploration">003147</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.</title>
<author>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Kunming Institute of Botany, Institute of Tibetan Plateau Research at Kunming, Chinese Academy of sciences, Kunming, Yunnan, 650204, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Kunming Institute of Botany, Institute of Tibetan Plateau Research at Kunming, Chinese Academy of sciences, Kunming, Yunnan, 650204</wicri:regionArea>
<wicri:noRegion>650204</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chiyu" sort="Zhang, Chiyu" uniqKey="Zhang C" first="Chiyu" last="Zhang">Chiyu Zhang</name>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genes, Duplicate (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oryza (enzymology)</term>
<term>Oryza (genetics)</term>
<term>Phospholipase D (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Vitis (enzymology)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Gènes dupliqués (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Oryza (enzymologie)</term>
<term>Oryza (génétique)</term>
<term>Phospholipase D (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Vitis (enzymologie)</term>
<term>Vitis (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phospholipase D</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Phospholipase D</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Evolution, Molecular</term>
<term>Genes, Duplicate</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence de protéine</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Gènes dupliqués</term>
<term>Génome végétal</term>
<term>Motifs d'acides aminés</term>
<term>Phylogenèse</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The Phospholipase D (PLD) family plays an important role in the regulation of cellular processes in plants, including abscisic acid signaling, programmed cell death, root hair patterning, root growth, freezing tolerance and other stress responses. PLD genes constitute an important gene family in higher plants. However, until now our knowledge concerning the PLD gene family members and their evolutionary relationship in woody plants such as Poplar and Grape has been limited.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, we have provided a genome-wide analysis of the PLD gene family in Poplar and Grape. Eighteen and eleven members of the PLD gene family were identified in Poplar and Grape respectively. Phylogenetic and gene structure analyses showed that the PLD gene family can be divided into 6 subgroups: alpha, beta/gamma, delta, epsilon, zeta, and phi, and that the 6 PLD subgroups originated from 4 original ancestors through a series of gene duplications. Interestingly, the majority of the PLD genes from both Poplar (76.5%, 13/17) and Grape (90.9%, 10/11) clustered closely together in the phylogenetic tree to the extent that their evolutionary relationship appears more tightly linked to each other, at least in terms of the PLD gene family, than it does to either Arabidopsis or rice. Five pairs of duplicated PLD genes were identified in Poplar, more than those in Grape, suggesting that frequent gene duplications occurred after these species diverged, resulting in a rapid expansion of the PLD gene family in Poplar. The majority of the gene duplications in Poplar were caused by segmental duplication and were distinct from those in Arabidopsis, rice and Grape. Additionally, the gene duplications in Poplar were estimated to have occurred from 11.31 to 13.76 million years ago, which are later than those that occurred in the other three plant species. Adaptive evolution analysis showed that positive selection contributed to the evolution of the PXPH- and SP-PLDs, whereas purifying selection has driven the evolution of C2-PLDs that contain a C2 domain in their N-terminal. Analyses have shown that the C2-PLDs generally contain 23 motifs, more than 17 motifs in PXPH-PLDs that contain PX and PH domains in N-terminal. Among these identified motifs, eight, (6, 8, 5, 4, 3, 14, 1 and 19) were shared by both the C2- and PXPH-PLD subfamilies, implying that they may be necessary for PLD function. Five of these shared motifs are located in the central region of the proteins, thus strongly suggesting that this region containing a HKD domain (named after three conserved H, K and D residues) plays a key role in the lipase activity of the PLDs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>As a first step towards genome wide analyses of the PLD genes in woody plants, our results provide valuable information for increasing our understanding of the function and evolution of the PLD gene family in higher plants.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20565843</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.</ArticleTitle>
<Pagination>
<MedlinePgn>117</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-10-117</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The Phospholipase D (PLD) family plays an important role in the regulation of cellular processes in plants, including abscisic acid signaling, programmed cell death, root hair patterning, root growth, freezing tolerance and other stress responses. PLD genes constitute an important gene family in higher plants. However, until now our knowledge concerning the PLD gene family members and their evolutionary relationship in woody plants such as Poplar and Grape has been limited.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, we have provided a genome-wide analysis of the PLD gene family in Poplar and Grape. Eighteen and eleven members of the PLD gene family were identified in Poplar and Grape respectively. Phylogenetic and gene structure analyses showed that the PLD gene family can be divided into 6 subgroups: alpha, beta/gamma, delta, epsilon, zeta, and phi, and that the 6 PLD subgroups originated from 4 original ancestors through a series of gene duplications. Interestingly, the majority of the PLD genes from both Poplar (76.5%, 13/17) and Grape (90.9%, 10/11) clustered closely together in the phylogenetic tree to the extent that their evolutionary relationship appears more tightly linked to each other, at least in terms of the PLD gene family, than it does to either Arabidopsis or rice. Five pairs of duplicated PLD genes were identified in Poplar, more than those in Grape, suggesting that frequent gene duplications occurred after these species diverged, resulting in a rapid expansion of the PLD gene family in Poplar. The majority of the gene duplications in Poplar were caused by segmental duplication and were distinct from those in Arabidopsis, rice and Grape. Additionally, the gene duplications in Poplar were estimated to have occurred from 11.31 to 13.76 million years ago, which are later than those that occurred in the other three plant species. Adaptive evolution analysis showed that positive selection contributed to the evolution of the PXPH- and SP-PLDs, whereas purifying selection has driven the evolution of C2-PLDs that contain a C2 domain in their N-terminal. Analyses have shown that the C2-PLDs generally contain 23 motifs, more than 17 motifs in PXPH-PLDs that contain PX and PH domains in N-terminal. Among these identified motifs, eight, (6, 8, 5, 4, 3, 14, 1 and 19) were shared by both the C2- and PXPH-PLD subfamilies, implying that they may be necessary for PLD function. Five of these shared motifs are located in the central region of the proteins, thus strongly suggesting that this region containing a HKD domain (named after three conserved H, K and D residues) plays a key role in the lipase activity of the PLDs.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">As a first step towards genome wide analyses of the PLD genes in woody plants, our results provide valuable information for increasing our understanding of the function and evolution of the PLD gene family in higher plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Kunming Institute of Botany, Institute of Tibetan Plateau Research at Kunming, Chinese Academy of sciences, Kunming, Yunnan, 650204, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Chiyu</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yongping</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiangyang</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.1.4.4</RegistryNumber>
<NameOfSubstance UI="D010739">Phospholipase D</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020131" MajorTopicYN="N">Genes, Duplicate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010739" MajorTopicYN="N">Phospholipase D</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20565843</ArticleId>
<ArticleId IdType="pii">1471-2229-10-117</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-10-117</ArticleId>
<ArticleId IdType="pmc">PMC3095279</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2007 Oct;17(10):881-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17876344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2002;3:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11876823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Dec;16(12):1664-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14594812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Mar 14;272(11):7055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1947 Aug;169(3):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20259103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Nov 5;262(31):15309-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3117799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 May;6(5):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Aug;9(8):378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Mar 24;80(6):929-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2004 Feb;82(1):225-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15052340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2001 Mar;21(2):310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1983 Dec;1(1):94-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6599963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 7;272(45):28267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Aug;10(8):368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16023886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 May 1;353(1):131-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9578608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Mar;36(5):627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9526495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Mar;128(3):1057-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11891260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):308-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Sep;15(9):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Feb;3(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15685292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18940856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 May;58(3):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(1):48-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9520501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 1;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Apr;16(4):510-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Physiol Biochem Pharmacol. 2002;144:1-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11987824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Apr;18(4):453-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 20;277(51):49685-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12397060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Aug 1;16(15):4519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9303296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Jul;21(7):242-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1984 Aug 15;795(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6432054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
<name sortKey="Zhang, Chiyu" sort="Zhang, Chiyu" uniqKey="Zhang C" first="Chiyu" last="Zhang">Chiyu Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Qi" sort="Liu, Qi" uniqKey="Liu Q" first="Qi" last="Liu">Qi Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20565843
   |texte=   Genome-wide and molecular evolution analyses of the phospholipase D gene family in Poplar and Grape.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20565843" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020